Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Front Immunol ; 14: 1254873, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37822940

RESUMEN

Introduction: Severe COVID-19 and non-COVID-19 pulmonary sepsis share pathophysiological, immunological, and clinical features, suggesting that severe COVID-19 is a form of viral sepsis. Our objective was to identify shared gene expression trajectories strongly associated with eventual mortality between severe COVID-19 patients and contemporaneous non-COVID-19 sepsis patients in the intensive care unit (ICU) for potential therapeutic implications. Methods: Whole blood was drawn from 20 COVID-19 patients and 22 non-COVID-19 adult sepsis patients at two timepoints: ICU admission and approximately a week later. RNA-Seq was performed on whole blood to identify differentially expressed genes and significantly enriched pathways. Using systems biology methods, drug candidates targeting key genes in the pathophysiology of COVID-19 and sepsis were identified. Results: When compared to survivors, non-survivors (irrespective of COVID-19 status) had 3.6-fold more "persistent" genes (genes that stayed up/downregulated at both timepoints) (4,289 vs. 1,186 genes); these included persistently downregulated genes in T-cell signaling and persistently upregulated genes in select innate immune and metabolic pathways, indicating unresolved immune dysfunction in non-survivors, while resolution of these processes occurred in survivors. These findings of persistence were further confirmed using two publicly available datasets of COVID-19 and sepsis patients. Systems biology methods identified multiple immunomodulatory drug candidates that could target this persistent immune dysfunction, which could be repurposed for possible therapeutic use in both COVID-19 and sepsis. Discussion: Transcriptional evidence of persistent immune dysfunction was associated with 28-day mortality in both COVID-19 and non-COVID-19 septic patients. These findings highlight the opportunity for mitigating common mechanisms of immune dysfunction with immunomodulatory therapies for both diseases.


Asunto(s)
COVID-19 , Sepsis , Adulto , Humanos , Unidades de Cuidados Intensivos , Viremia
2.
Front Immunol ; 14: 1167917, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37090709

RESUMEN

Introduction: Severe COVID-19 and non-COVID-19 pulmonary sepsis share pathophysiological, immunological, and clinical features. To what extent they share mechanistically-based gene expression trajectories throughout hospitalization was unknown. Our objective was to compare gene expression trajectories between severe COVID-19 patients and contemporaneous non-COVID-19 severe sepsis patients in the intensive care unit (ICU). Methods: In this prospective single-center observational cohort study, whole blood was drawn from 20 COVID-19 patients and 22 non-COVID-19 adult sepsis patients at two timepoints: ICU admission and approximately a week later. RNA-Seq was performed on whole blood to identify differentially expressed genes and significantly enriched pathways. Results: At ICU admission, despite COVID-19 patients being almost clinically indistinguishable from non-COVID-19 sepsis patients, COVID-19 patients had 1,215 differentially expressed genes compared to non-COVID-19 sepsis patients. After one week in the ICU, the number of differentially expressed genes dropped to just 9 genes. This drop coincided with decreased expression of antiviral genes and relatively increased expression of heme metabolism genes over time in COVID-19 patients, eventually reaching expression levels seen in non-COVID-19 sepsis patients. Both groups also had similar underlying immune dysfunction, with upregulation of immune processes such as "Interleukin-1 signaling" and "Interleukin-6/JAK/STAT3 signaling" throughout disease compared to healthy controls. Discussion: Early on, COVID-19 patients had elevated antiviral responses and suppressed heme metabolism processes compared to non-COVID-19 severe sepsis patients, although both had similar underlying immune dysfunction. However, after one week in the ICU, these diseases became indistinguishable on a gene expression level. These findings highlight the importance of early antiviral treatment for COVID-19, the potential for heme-related therapeutics, and consideration of immunomodulatory therapies for both diseases to treat shared immune dysfunction.


Asunto(s)
COVID-19 , Sepsis , Adulto , Humanos , Estudios Prospectivos , COVID-19/genética , Sepsis/genética , Unidades de Cuidados Intensivos , Antivirales
3.
Front Microbiol ; 13: 1055512, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36504765

RESUMEN

Pseudomonas aeruginosa, like other pathogens, adapts to the limiting nutritional environment of the host by altering patterns of gene expression and utilizing alternative pathways required for survival. Understanding the genes essential for survival in the host gives insight into pathways that this organism requires during infection and has the potential to identify better ways to treat infections. Here, we used a saturated transposon insertion mutant pool of P. aeruginosa strain PAO1 and transposon insertion sequencing (Tn-Seq), to identify genes conditionally important for survival under conditions mimicking the environment of a nosocomial infection. Conditions tested included tissue culture medium with and without human serum, a murine abscess model, and a human skin organoid model. Genes known to be upregulated during infections, as well as those involved in nucleotide metabolism, and cobalamin (vitamin B12) biosynthesis, etc., were required for survival in vivo- and in host mimicking conditions, but not in nutrient rich lab medium, Mueller Hinton broth (MHB). Correspondingly, mutants in genes encoding proteins of nucleotide and cobalamin metabolism pathways were shown to have growth defects under physiologically-relevant media conditions, in vivo, and in vivo-like models, and were downregulated in expression under these conditions, when compared to MHB. This study provides evidence for the relevance of studying P. aeruginosa fitness in physiologically-relevant host mimicking conditions and identified metabolic pathways that represent potential novel targets for alternative therapies.

4.
Cells ; 11(21)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36359854

RESUMEN

Bacterial biofilm infections associated with wounded skin are prevalent, recalcitrant, and in urgent need of treatments. Additionally, host responses in the skin to biofilm infections are not well understood. Here we employed a human organoid skin model to explore the transcriptomic changes of thermally-injured epidermis to methicillin-resistant Staphylococcus aureus (MRSA) biofilm colonization. MRSA biofilm impaired skin barrier function, enhanced extracellular matrix remodelling, elicited inflammatory responses including IL-17, IL-12 family and IL-6 family interleukin signalling, and modulated skin metabolism. Synthetic antibiofilm peptide DJK-5 effectively diminished MRSA biofilm and associated skin inflammation in wounded human ex vivo skin. In the epidermis, DJK-5 shifted the overall skin transcriptome towards homeostasis including modulating the biofilm induced inflammatory response, promoting the skin DNA repair function, and downregulating MRSA invasion of thermally damaged skin. These data clarified the underlying immunopathogenesis of biofilm infections and revealed the intrinsic promise of synthetic peptides in reducing inflammation and biofilm infections.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Humanos , Staphylococcus aureus Resistente a Meticilina/fisiología , Antibacterianos/farmacología , Biopelículas , Epidermis/metabolismo , Péptidos/metabolismo , Inflamación/metabolismo
5.
PLoS One ; 17(10): e0276010, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36240188

RESUMEN

Salmonella is an intracellular pathogen causing significant morbidity and mortality. Its ability to grow inside macrophages is important to virulence, and is dependent on the activation state of the macrophages. Classically activated M1 macrophages are non-permissive for Salmonella growth, while alternatively activated M2 macrophages are permissive for Salmonella growth. Here we showed that endotoxin-primed macrophages (MEP), such as those associated with sepsis, showed similar levels of Salmonella resistance to M1 macrophages after 2 hr of intracellular infection, but at the 4 hr and 24 hr time points were susceptible like M2 macrophages. To understand this mechanistically, transcriptomic sequencing, RNA-Seq, was performed. This showed that M1 and MEP macrophages that had not been exposed to Salmonella, demonstrated a process termed here as primed activation, in expressing relatively higher levels of particular anti-infective genes and pathways, including the JAK-STAT (Janus kinase-signal transducer and activator of transcription) pathway. In contrast, in M2 macrophages these genes and pathways were largely expressed only in response to infection. Conversely, in response to infection, M1 macrophages, but not MEP macrophages, modulated additional genes known to be associated with susceptibility to Salmonella infection, possibly contributing to the differences in resistance at later time points. Application of the JAK inhibitor Ruxolitinib before infection reduced resistance in M1 macrophages, supporting the importance of early JAK-STAT signalling in M1 resistance to Salmonella.


Asunto(s)
Inhibidores de las Cinasas Janus , Transcriptoma , Tolerancia a Endotoxinas , Endotoxinas/metabolismo , Inhibidores de las Cinasas Janus/metabolismo , Inhibidores de las Cinasas Janus/farmacología , Quinasas Janus/metabolismo , Activación de Macrófagos/genética , Macrófagos/metabolismo , Salmonella/genética , Salmonella/metabolismo
6.
Front Microbiol ; 13: 1021021, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36312952

RESUMEN

Biofilms are the most common cause of bacterial infections in humans and notoriously hard to treat due to their ability to withstand antibiotics and host immune defenses. To overcome the current lack of effective antibiofilm therapies and guide future design, the identification of novel biofilm-specific gene targets is crucial. In this regard, transcriptional regulators have been proposed as promising targets for antimicrobial drug design. Therefore, a Transposon insertion sequencing approach was employed to systematically identify regulators phenotypically affecting biofilm growth in Pseudomonas aeruginosa PA14 using the TnSeq analysis tools Bio-TraDIS and TRANSIT. A screen of a pool of 300,000 transposon insertion mutants identified 349 genes involved in biofilm growth on hydroxyapatite, including 47 regulators. Detection of 19 regulatory genes participating in well-established biofilm pathways validated the results. An additional 28 novel prospective biofilm regulators suggested the requirement for multiple one-component transcriptional regulators. Biofilm-defective phenotypes were confirmed for five one-component transcriptional regulators and a protein kinase, which did not affect motility phenotypes. The one-component transcriptional regulator bosR displayed a conserved role in P. aeruginosa biofilm growth since its ortholog in P. aeruginosa strain PAO1 was also required for biofilm growth. Microscopic analysis of a chromosomal deletion mutant of bosR confirmed the role of this regulator in biofilm growth. Overall, our results highlighted that the gene network driving biofilm growth is complex and involves regulators beyond the primarily studied groups of two-component systems and cyclic diguanylate signaling proteins. Furthermore, biofilm-specific regulators, such as bosR, might constitute prospective new drug targets to overcome biofilm infections.

7.
Front Microbiol ; 13: 867449, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35369481

RESUMEN

Engineered liposomes composed of the naturally occurring lipids sphingomyelin (Sm) and cholesterol (Ch) have been demonstrated to efficiently neutralize toxins secreted by Gram-positive bacteria such as Streptococcus pneumoniae and Staphylococcus aureus. Here, we hypothesized that liposomes are capable of neutralizing cytolytic virulence factors secreted by the Gram-negative pathogen Pseudomonas aeruginosa. We used the highly virulent cystic fibrosis P. aeruginosa Liverpool Epidemic Strain LESB58 and showed that sphingomyelin (Sm) and a combination of sphingomyelin with cholesterol (Ch:Sm; 66 mol/% Ch and 34 mol/% Sm) liposomes reduced lysis of human bronchial and red blood cells upon challenge with the Pseudomonas secretome. Mass spectrometry of liposome-sequestered Pseudomonas proteins identified the virulence-promoting hemolytic phospholipase C (PlcH) as having been neutralized. Pseudomonas aeruginosa supernatants incubated with liposomes demonstrated reduced PlcH activity as assessed by the p-nitrophenylphosphorylcholine (NPPC) assay. Testing the in vivo efficacy of the liposomes in a murine cutaneous abscess model revealed that Sm and Ch:Sm, as single dose treatments, attenuated abscesses by >30%, demonstrating a similar effect to that of a mutant lacking plcH in this infection model. Thus, sphingomyelin-containing liposome therapy offers an interesting approach to treat and reduce virulence of complex infections caused by P. aeruginosa and potentially other Gram-negative pathogens expressing PlcH.

8.
EBioMedicine ; 75: 103776, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35027333

RESUMEN

BACKGROUND: Inter-individual variability during sepsis limits appropriate triage of patients. Identifying, at first clinical presentation, gene expression signatures that predict subsequent severity will allow clinicians to identify the most at-risk groups of patients and enable appropriate antibiotic use. METHODS: Blood RNA-Seq and clinical data were collected from 348 patients in four emergency rooms (ER) and one intensive-care-unit (ICU), and 44 healthy controls. Gene expression profiles were analyzed using machine learning and data mining to identify clinically relevant gene signatures reflecting disease severity, organ dysfunction, mortality, and specific endotypes/mechanisms. FINDINGS: Gene expression signatures were obtained that predicted severity/organ dysfunction and mortality in both ER and ICU patients with accuracy/AUC of 77-80%. Network analysis revealed these signatures formed a coherent biological program, with specific but overlapping mechanisms/pathways. Given the heterogeneity of sepsis, we asked if patients could be assorted into discrete groups with distinct mechanisms (endotypes) and varying severity. Patients with early sepsis could be stratified into five distinct and novel mechanistic endotypes, named Neutrophilic-Suppressive/NPS, Inflammatory/INF, Innate-Host-Defense/IHD, Interferon/IFN, and Adaptive/ADA, each based on ∼200 unique gene expression differences, and distinct pathways/mechanisms (e.g., IL6/STAT3 in NPS). Endotypes had varying overall severity with two severe (NPS/INF) and one relatively benign (ADA) groupings, consistent with reanalysis of previous endotype studies. A 40 gene-classification tool (accuracy=96%) and several gene-pairs (accuracy=89-97%) accurately predicted endotype status in both ER and ICU validation cohorts. INTERPRETATION: The severity and endotype signatures indicate that distinct immune signatures precede the onset of severe sepsis and lethality, providing a method to triage early sepsis patients.


Asunto(s)
Sepsis , Cuidados Críticos , Humanos , Unidades de Cuidados Intensivos , Sepsis/diagnóstico , Sepsis/genética , Índice de Severidad de la Enfermedad , Transcriptoma
9.
PLoS One ; 16(4): e0250977, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33930077

RESUMEN

Pseudomonas aeruginosa is a ubiquitous opportunistic pathogen that causes considerable human morbidity and mortality, particularly in nosocomial infections and individuals with cystic fibrosis. P. aeruginosa can adapt to surface growth by undergoing swarming motility, a rapid multicellular movement that occurs on viscous soft surfaces with amino acids as a nitrogen source. Here we tested the small synthetic host defense peptide, innate defense regulator 1018, and found that it inhibited swarming motility at concentrations as low as 0.75 µg/ml, well below the MIC for strain PA14 planktonic cells (64 µg/ml). A screen of the PA14 transposon insertion mutant library revealed 29 mutants that were more tolerant to peptide 1018 during swarming, five of which demonstrated significantly greater swarming than the WT in the presence of peptide. Transcriptional analysis (RNA-Seq) of cells that were inoculated on swarming plates containing 1.0 µg/ml peptide revealed differential expression of 1,190 genes compared to cells swarming on plates without peptide. Furthermore, 1018 treatment distinctly altered the gene expression profile of cells when compared to that untreated cells in the centre of the swarm colonies. Peptide-treated cells exhibited changes in the expression of genes implicated in the stringent stress response including those regulated by anr, which is involved in anaerobic adaptation, indicative of a mechanism by which 1018 might inhibit swarming motility. Overall, this study illustrates potential mechanisms by which peptide 1018 inhibits swarming surface motility, an important bacterial adaptation associated with antibiotic resistance, virulence, and dissemination of P. aeruginosa.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Péptidos/farmacología , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/efectos de los fármacos , Transactivadores/metabolismo , Proteínas Bacterianas/genética , Biopelículas/efectos de los fármacos , Farmacorresistencia Microbiana , Humanos , Infecciones por Pseudomonas/genética , Infecciones por Pseudomonas/metabolismo , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Transactivadores/genética , Virulencia
10.
Front Immunol ; 12: 638571, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33692808

RESUMEN

Objectives: Chronic primary vasculitis describes a group of complex and rare diseases that are characterized by blood vessel inflammation. Classification of vasculitis subtypes is based predominantly on the size of the involved vessels and clinical phenotype. There is a recognized need to improve classification, especially for small-to-medium sized vessel vasculitides, that, ideally, is based on the underlying biology with a view to informing treatment. Methods: We performed RNA-Seq on blood samples from children (n = 41) and from adults (n = 11) with small-to-medium sized vessel vasculitis, and used unsupervised hierarchical clustering of gene expression patterns in combination with clinical metadata to define disease subtypes. Results: Differential gene expression at the time of diagnosis separated patients into two primary endotypes that differed in the expression of ~3,800 genes in children, and ~1,600 genes in adults. These endotypes were also present during disease flares, and both adult and pediatric endotypes could be discriminated based on the expression of just 20 differentially expressed genes. Endotypes were associated with distinct biological processes, namely neutrophil degranulation and T cell receptor signaling. Conclusions: Phenotypically similar subsets of small-to-medium sized vessel vasculitis may have different mechanistic drivers involving innate vs. adaptive immune processes. Discovery of these differentiating immune features provides a mechanistic-based alternative for subclassification of vasculitis.


Asunto(s)
Vasos Sanguíneos/patología , Inflamación/genética , Neutrófilos/inmunología , Linfocitos T/inmunología , Vasculitis/genética , Adulto , Degranulación de la Célula/genética , Niño , Estudios de Cohortes , Femenino , Humanos , Masculino , Tamaño de los Órganos , Fenotipo , Receptores de Antígenos de Linfocitos T/metabolismo , Análisis de Secuencia de ARN , Transducción de Señal , Transcriptoma
11.
J Cyst Fibros ; 20(1): 97-105, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32684439

RESUMEN

BACKGROUND: Aberrant responses by the cystic fibrosis airway epithelium during viral infection may underly the clinical observations. Whether CFTR modulators affect antiviral responses by CF epithelia is presently unknown. We tested the hypothesis that treatment of CF epithelial cells with ivacaftor (Iva) or ivacaftor/lumacaftor (Iva/Lum) would improve control of rhinovirus infection. METHODS: Nineteen CF epithelial cultures (10 homozygous for p.Phe508del as CFTR Class 2, 9 p.Phe508del/p.Gly551Asp as Class 3) were infected with rhinovirus 1B at multiplicity of infection 12 for 24 h. Culture RNA and supernatants were harvested to assess gene and protein expression respectively. RESULTS: RNA-seq analysis comparing rhinovirus infected cultures to control identified 796 and 629 differentially expressed genes for Class 2 and Class 3, respectively. This gene response was highly conserved when cells were treated with CFTR modulators and were predicted to be driven by the same interferon-pathway transcriptional regulators (IFNA, IFNL1, IFNG, IRF7, STAT1). Direct comparisons between treated and untreated infected cultures did not yield any differentially expressed genes for Class 3 and only 68 genes for Class 2. Changes were predominantly related to regulators of lipid metabolism and inflammation, aspects of epithelial biology known to be dysregulated in CF. In addition, CFTR modulators did not affect viral copy number, or levels of pro-inflammatory cytokines produced post-infection. CONCLUSIONS: Though long-term clinical data is not yet available, results presented here suggest that first generation CFTR modulators do not interfere with core airway epithelial responses to rhinovirus infection. Future work should investigate the latest triple modulation therapies.


Asunto(s)
Aminofenoles/farmacología , Aminopiridinas/farmacología , Benzodioxoles/farmacología , Resfriado Común/virología , Fibrosis Quística/genética , Quinolonas/farmacología , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/virología , Rhinovirus , Células Cultivadas , Resfriado Común/complicaciones , Fibrosis Quística/complicaciones , Combinación de Medicamentos , Humanos , Mucosa Respiratoria/citología
12.
Front Immunol ; 11: 578505, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329546

RESUMEN

Neonates have heightened susceptibility to infections. The biological mechanisms are incompletely understood but thought to be related to age-specific adaptations in immunity due to resource constraints during immune system development and growth. We present here an extended analysis of our proteomics study of peripheral blood-plasma from a study of healthy full-term newborns delivered vaginally, collected at the day of birth and on day of life (DOL) 1, 3, or 7, to cover the first week of life. The plasma proteome was characterized by LC-MS using our established 96-well plate format plasma proteomics platform. We found increasing acute phase proteins and a reduction of respective inhibitors on DOL1. Focusing on the complement system, we found increased plasma concentrations of all major components of the classical complement pathway and the membrane attack complex (MAC) from birth onward, except C7 which seems to have near adult levels at birth. In contrast, components of the lectin and alternative complement pathways mainly decreased. A comparison to whole blood messenger RNA (mRNA) levels enabled characterization of mRNA and protein levels in parallel, and for 23 of the 30 monitored complement proteins, the whole blood transcript information by itself was not reflective of the plasma protein levels or dynamics during the first week of life. Analysis of immunoglobulin (Ig) mRNA and protein levels revealed that IgM levels and synthesis increased, while the plasma concentrations of maternally transferred IgG1-4 decreased in accordance with their in vivo half-lives. The neonatal plasma ratio of IgG1 to IgG2-4 was increased compared to adult values, demonstrating a highly efficient IgG1 transplacental transfer process. Partial compensation for maternal IgG degradation was achieved by endogenous synthesis of the IgG1 subtype which increased with DOL. The findings were validated in a geographically distinct cohort, demonstrating a consistent developmental trajectory of the newborn's immune system over the first week of human life across continents. Our findings indicate that the classical complement pathway is central for newborn immunity and our approach to characterize the plasma proteome in parallel with the transcriptome will provide crucial insight in immune ontogeny and inform new approaches to prevent and treat diseases.


Asunto(s)
Proteínas de Fase Aguda/metabolismo , Desarrollo Infantil , Proteínas del Sistema Complemento/metabolismo , Sistema Inmunológico/metabolismo , Inmunidad Innata , Inmunoglobulinas/sangre , Proteoma , Factores de Edad , Proteínas del Sistema Complemento/genética , Humanos , Sistema Inmunológico/crecimiento & desarrollo , Sistema Inmunológico/inmunología , Recién Nacido , Prueba de Estudio Conceptual , Mapas de Interacción de Proteínas , Proteómica , ARN Mensajero/sangre
13.
Proc Natl Acad Sci U S A ; 117(52): 33519-33529, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33318204

RESUMEN

Pseudomonas aeruginosa causes severe multidrug-resistant infections that often lead to bacteremia and sepsis. Physiologically relevant conditions can increase the susceptibility of pathogens to antibiotics, such as azithromycin (AZM). When compared to minimal-inhibitory concentrations (MICs) in laboratory media, AZM had a 16-fold lower MIC in tissue culture medium with 5% Mueller Hinton broth (MHB) and a 64-fold lower MIC in this tissue culture medium with 20% human serum. AZM also demonstrated increased synergy in combination with synthetic host-defense peptides DJK-5 and IDR-1018 under host-like conditions and in a murine abscess model. To mechanistically study the altered effects of AZM under physiologically relevant conditions, global transcriptional analysis was performed on P. aeruginosa with and without effective concentrations of AZM. This revealed that the arn operon, mediating arabinosaminylation of lipopolysaccharides and related regulatory systems, was down-regulated in host-like media when compared to MHB. Inactivation of genes within the arn operon led to increased susceptibility of P. aeruginosa to AZM and great increases in synergy between AZM and other antimicrobial agents, indicating that dysregulation of the arn operon might explain increased AZM uptake and synergy in host-like media. Furthermore, genes involved in central and energy metabolism and ribosome biogenesis were dysregulated more in physiologically relevant conditions treated with AZM, likely due to general changes in cell physiology as a result of the increased effectiveness of AZM in these conditions. These data suggest that, in addition to the arn operon, there are multiple factors in host-like environments that are responsible for observed changes in susceptibility.


Asunto(s)
Azitromicina/farmacología , Medios de Cultivo/farmacología , Pseudomonas aeruginosa/crecimiento & desarrollo , Antibacterianos/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Sinergismo Farmacológico , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Humanos , Macrólidos/farmacología , Pruebas de Sensibilidad Microbiana , Operón/genética , Péptidos/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Suero
14.
Biochim Biophys Acta Mol Basis Dis ; 1866(12): 165950, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32841733

RESUMEN

IL-33 induces airway inflammation and hyper-responsiveness in respiratory diseases. Although defined as a therapeutic target, there are limited studies that have comprehensively investigated IL-33-mediated responses in the lungs in vivo. In this study, we characterized immunological and physiological responses induced by intranasal IL-33 challenge, in a mouse model. We identified specific cytokines, IL-4, IL-5, IL-6, IL-10, IP-10 and MIP1-α, that are increased in bronchoalveolar lavage and lung tissues by IL-33. Using transcriptomics (RNA-Seq) we demonstrated that 2279 transcripts were up-regulated and 1378 downregulated (≥ 2-fold, p < 0.01) in lung tissues, in response to IL-33. Bioinformatic interrogation of the RNA-Seq data was used to predict biological pathways and upstream regulators involved in IL-33-mediated responses. We showed that the mRNA and protein of STAT4, a predicted upstream regulator of IL-33-induced transcripts, was significantly enhanced in the lungs following IL-33 challenge. Overall, this study provides specific IL-33-induced molecular targets and endpoints that can be used as a resource for in vivo studies, e.g. in preclinical murine models examining novel interventions to target downstream effects of IL-33.


Asunto(s)
Interleucina-33/inmunología , Pulmón/inmunología , Pulmón/metabolismo , Modelos Animales , Transcriptoma , Administración Intranasal , Animales , Femenino , Interleucina-33/administración & dosificación , Pulmón/patología , Ratones , Ratones Endogámicos BALB C , RNA-Seq
15.
Biomolecules ; 10(9)2020 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-32842611

RESUMEN

Direct-acting anticancer (DAA) peptides are cytolytic peptides that show promise as novel anticancer agents. DAA peptides bind to anionic molecules that are abundant on cancer cells relative to normal healthy cells, which results in preferential killing of cancer cells. Due to the mechanism by which DAA peptides kill cancer cells, it was thought that resistance would be difficult to achieve. Here, we describe the generation and characterization of two MDA-MB-231 breast cancer cell-line variants with reduced susceptibility to pleurocidin-family and mastoparan DAA peptides. Peptide resistance correlated with deficiencies in peptide binding to cell-surface structures, suggesting that resistance was due to altered composition of the cell membrane. Peptide-resistant MDA-MB-231 cells were phenotypically distinct yet remained susceptible to chemotherapy. Surprisingly, neither of the peptide-resistant breast cancer cell lines was able to establish tumors in immune-deficient mice. Histological analysis and RNA sequencing suggested that tumorigenicity was impacted by alternations in angiogenesis and extracellular matrix composition in the peptide-resistant MDA-MB-231 variants. Collectively, these data further support the therapeutic potential of DAA peptides as adjunctive treatments for cancer.


Asunto(s)
Antineoplásicos/metabolismo , Neoplasias de la Mama/metabolismo , Proteínas de Peces/metabolismo , Animales , Neoplasias de la Mama/patología , Resistencia a Antineoplásicos , Femenino , Humanos , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos NOD , Células Tumorales Cultivadas
16.
mSystems ; 5(4)2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32753509

RESUMEN

The bacterial stringent stress response, mediated by the signaling molecule guanosine tetraphosphate, ppGpp, has recently gained attention as being important during normal cellular growth and as a potential new therapeutic target, which warrants detailed mechanistic understanding. Here, we used intracellular protein tracking in Pseudomonas aeruginosa PAO1, which indicated that RelA was bound to the ribosome, while SpoT localized at the cell poles. Transcriptome sequencing (RNA-Seq) was used to investigate the transcriptome of a ppGpp-deficient strain under nonstressful, nutrient-rich broth conditions where the mutant grew at the same rate as the parent strain. In the exponential growth phase, the lack of ppGpp led to >1,600 transcriptional changes (fold change cutoff of ±1.5), providing further novel insights into the normal physiological role of ppGpp. The stringent response was linked to gene expression of various proteases and secretion systems, including aprA, PA0277, impA, and clpP2 The previously observed reduction in cytotoxicity toward red blood cells in a stringent response mutant appeared to be due to aprA Investigation of an aprA mutant in a murine skin infection model showed increased survival rates of mice infected with the aprA mutant, consistent with previous observations that stringent response mutants have reduced virulence. In addition, the overexpression of relA, but not induction of ppGpp with serine hydroxamate, dysregulated global transcriptional regulators as well as >30% of the regulatory networks controlled by AlgR, OxyR, LasR, and AmrZ. Together, these data expand our knowledge about ppGpp and its regulatory network and role in environmental adaptation. It also confirms its important role throughout the normal growth cycle of bacteria.IMPORTANCE Microorganisms need to adapt rapidly to survive harsh environmental changes. Here, we showed the broad influence of the highly studied bacterial stringent stress response under nonstressful conditions that indicate its general physiological importance and might reflect the readiness of bacteria to respond to and activate acute stress responses. Using RNA-Seq to investigate the transcriptional network of Pseudomonas aeruginosa cells revealed that >30% of all genes changed expression in a stringent response mutant under optimal growth conditions. This included genes regulated by global transcriptional regulators and novel downstream effectors. Our results help to understand the importance of this stress regulator in bacterial lifestyle under relatively unstressed conditions. As such, it draws attention to the consequences of targeting this ubiquitous bacterial signaling molecule.

17.
Front Immunol ; 11: 1020, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32547548

RESUMEN

Chronic enteric Mycobacterium avium ssp. paratuberculosis (MAP) infections are endemic in ruminants globally resulting in significant production losses. The mucosal immune responses occurring at the site of infection, specifically in Peyer's patches (PP), are not well-understood. The ruminant small intestine possesses two functionally distinct PPs. Discrete PPs function as mucosal immune induction sites and a single continuous PP, in the terminal small intestine, functions as a primary lymphoid tissue for B cell repertoire diversification. We investigated whether MAP infection of discrete vs. continuous PPs resulted in the induction of significantly different pathogen-specific immune responses and persistence of MAP infection. Surgically isolated intestinal segments in neonatal calves were used to target MAP infection to individual PPs. At 12 months post-infection, MAP persisted in continuous PP (n = 4), but was significantly reduced (p = 0.046) in discrete PP (n = 5). RNA-seq analysis revealed control of MAP infection in discrete PP was associated with extensive transcriptomic changes (1,707 differentially expressed genes) but MAP persistent in continuous PP elicited few host responses (4 differentially expressed genes). Cytokine gene expression in tissue and MAP-specific recall responses by mucosal immune cells isolated from PP, lamina propria and mesenteric lymph node revealed interleukin (IL)22 and IL27 as unique correlates of protection associated with decreased MAP infection in discrete PP. This study provides the first description of mucosal immune responses occurring in bovine discrete jejunal PPs and reveals that a significant reduction in MAP infection is associated with specific cytokine responses. Conversely, MAP infection persists in the continuous ileal PP with minimal perturbation of host immune responses. These data reveal a marked dichotomy in host-MAP interactions within the two functionally distinct PPs of the small intestine and identifies mucosal immune responses associated with the control of a mycobacterial infection in the natural host.


Asunto(s)
Linfocitos B/inmunología , Mucosa Intestinal/fisiología , Mycobacterium avium/fisiología , Paratuberculosis/inmunología , Ganglios Linfáticos Agregados/inmunología , Animales , Animales Recién Nacidos , Antígenos Bacterianos/inmunología , Bovinos , Diferenciación Celular , Células Cultivadas , Selección Clonal Mediada por Antígenos , Interacciones Huésped-Patógeno , Inmunidad Mucosa/genética , Interleucina-27/genética , Interleucina-27/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Mucosa Intestinal/microbiología , Técnicas de Cultivo de Órganos , Análisis de Secuencia de ARN , Transcriptoma , Interleucina-22
18.
PLoS One ; 15(6): e0233841, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32479514

RESUMEN

BACKGROUND: Host immune responses during late-onset sepsis (LOS) in very preterm infants are poorly characterised due to a complex and dynamic pathophysiology and challenges in working with small available blood volumes. We present here an unbiased transcriptomic analysis of whole peripheral blood from very preterm infants at the time of LOS. METHODS: RNA-Seq was performed on peripheral blood samples (6-29 days postnatal age) taken at the time of suspected LOS from very preterm infants <30 weeks gestational age. Infants were classified based on blood culture positivity and elevated C-reactive protein concentrations as having confirmed LOS (n = 5), possible LOS (n = 4) or no LOS (n = 9). Bioinformatics and statistical analyses performed included pathway over-representation and protein-protein interaction network analyses. Plasma cytokine immunoassays were performed to validate differentially expressed cytokine pathways. RESULTS: The blood leukocyte transcriptional responses of infants with confirmed LOS differed significantly from infants without LOS (1,317 differentially expressed genes). However, infants with possible LOS could not be distinguished from infants with no LOS or confirmed LOS. Transcriptional alterations associated with LOS included genes involved in pathogen recognition (mainly TLR pathways), cytokine signalling (both pro-inflammatory and inhibitory responses), immune and haematological regulation (including cell death pathways), and metabolism (altered cholesterol biosynthesis). At the transcriptional-level cytokine responses during LOS were characterised by over-representation of IFN-α/ß, IFN-γ, IL-1 and IL-6 signalling pathways and up-regulation of genes for inflammatory responses. Infants with confirmed LOS had significantly higher levels of IL-1α and IL-6 in their plasma. CONCLUSIONS: Blood responses in very preterm infants with LOS are characterised by altered host immune responses that appear to reflect unbalanced immuno-metabolic homeostasis.


Asunto(s)
Recien Nacido Extremadamente Prematuro , Sepsis Neonatal/inmunología , Transcriptoma , Citocinas/genética , Citocinas/metabolismo , Femenino , Humanos , Recién Nacido , Masculino , Sepsis Neonatal/sangre , Sepsis Neonatal/genética , Transducción de Señal
19.
Am J Physiol Lung Cell Mol Physiol ; 318(6): L1229-L1236, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32320279

RESUMEN

The abundance of lipopolysaccharide (LPS) in house dust mite (HDM) preparations is broad and mirrors the variability seen in the homes of people with asthma. LPS in commercially available stocks ranges from 31 to 5,2000 endotoxin units. The influence of vastly different LPS loads on the mechanisms that define the immune and inflammatory phenotype of HDM-challenged mice has not been defined. This aim of the study was to understand the lung phenotype of mice challenged with HDM extract containing high or low levels of LPS. Female BALB/c mice were sensitized for 2 wk with commercial HDM extract containing either high (36,000 endotoxin units; HHDM) or low (615 endotoxin units; LHDM) levels of LPS. Lung phenotype was characterized by measuring lung function, total and differential cell counts, cytokine abundance, and the lung transcriptome by RNA-sequencing. LPS levels in HDM stocks used for preclinical asthma research in mice remain poorly reported. In 2019, only 14% of papers specified LPS concentration in HDM lots. Specific differences existed in airway responsiveness between mice challenged with HHDM or LHDM. HHDM- and LHDM-induced cytokine profiles of bronchial lavage were significantly different and the lung transcriptome was differentially enriched for genes involved in DNA damage repair or cilium movement, following HHDM or LHDM challenge, respectively. The abundance of LPS in commercially available HDM influences the phenotype of allergic airways inflammation in mice. Failure to report the level of LPS in HDM extracts used in animal models of airway disease will lead to inconsistency in reproducibility and reliability of published data.


Asunto(s)
Endotoxinas/metabolismo , Pulmón/metabolismo , Pulmón/parasitología , Pyroglyphidae/fisiología , Transcriptoma/genética , Animales , Asma/complicaciones , Asma/parasitología , Asma/fisiopatología , Modelos Animales de Enfermedad , Femenino , Redes Reguladoras de Genes , Lipopolisacáridos , Pulmón/fisiopatología , Ratones Endogámicos BALB C , Neumonía/complicaciones , Neumonía/patología , Neumonía/fisiopatología
20.
Artículo en Inglés | MEDLINE | ID: mdl-31844008

RESUMEN

Swarming surface motility is a complex adaptation leading to multidrug antibiotic resistance and virulence factor production in Pseudomonas aeruginosa Here, we expanded previous studies to demonstrate that under swarming conditions, P. aeruginosa PA14 is more resistant to multiple antibiotics, including aminoglycosides, ß-lactams, chloramphenicol, ciprofloxacin, tetracycline, trimethoprim, and macrolides, than swimming cells, but is not more resistant to polymyxin B. We investigated the mechanism(s) of swarming-mediated antibiotic resistance by examining the transcriptomes of swarming cells and swarming cells treated with tobramycin by transcriptomics (RNA-Seq) and reverse transcriptase quantitative PCR (qRT-PCR). RNA-Seq of swarming cells (versus swimming) revealed 1,581 dysregulated genes, including 104 transcriptional regulators, two-component systems, and sigma factors, numerous upregulated virulence and iron acquisition factors, and downregulated ribosomal genes. Strain PA14 mutants in resistome genes that were dysregulated under swarming conditions were tested for their ability to swarm in the presence of tobramycin. In total, 41 mutants in genes dysregulated under swarming conditions were shown to be more resistant to tobramycin under swarming conditions, indicating that swarming-mediated tobramycin resistance was multideterminant. Focusing on two genes downregulated under swarming conditions, both prtN and wbpW mutants were more resistant to tobramycin, while the prtN mutant was additionally resistant to trimethoprim under swarming conditions; complementation of these mutants restored susceptibility. RNA-Seq of swarming cells treated with subinhibitory concentrations of tobramycin revealed the upregulation of the multidrug efflux pump MexXY and downregulation of virulence factors.


Asunto(s)
Pseudomonas aeruginosa/efectos de los fármacos , Aminoglicósidos/farmacología , Cloranfenicol/farmacología , Ciprofloxacina/farmacología , Farmacorresistencia Microbiana/genética , Regulación Bacteriana de la Expresión Génica , Macrólidos/farmacología , Mutación , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiología , RNA-Seq , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tetraciclina/farmacología , Tobramicina/farmacología , Trimetoprim/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...